NMDAR-Regulated Dynamics of Layer 4 Neuronal Dendrites during Thalamocortical Reorganization in Neonates

نویسندگان

  • Hidenobu Mizuno
  • Wenshu Luo
  • Etsuko Tarusawa
  • Yoshikazu M. Saito
  • Takuya Sato
  • Yumiko Yoshimura
  • Shigeyoshi Itohara
  • Takuji Iwasato
چکیده

Thalamocortical (TC) connectivity is reorganized by thalamic inputs during postnatal development; however, the dynamic characteristics of TC reorganization and the underlying mechanisms remain unexplored. We addressed this question using dendritic refinement of layer 4 (L4) stellate neurons in mouse barrel cortex (barrel cells) as a model; dendritic refinement of L4 neurons is a critical component of TC reorganization through which postsynaptic L4 neurons acquire their dendritic orientation toward presynaptic TC axon termini. Simultaneous labeling of TC axons and individual barrel cell dendrites allowed in vivo time-lapse imaging of dendritic refinement in the neonatal cortex. The barrel cells reinforced the dendritic orientation toward TC axons by dynamically moving their branches. In N-methyl-D-aspartate receptor (NMDAR)-deficient barrel cells, this dendritic motility was enhanced, and the orientation bias was not reinforced. Our data suggest that L4 neurons have "fluctuating" dendrites during TC reorganization and that NMDARs cell autonomously regulate these dynamics to establish fine-tuned circuits.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Regulation of AMPA and NMDA receptor-mediated EPSPs in dendritic trees of thalamocortical cells.

Two main excitatory synapses are formed at the dendritic arbor of first-order nuclei thalamocortical (TC) neurons. Ascending sensory axons primarily establish contacts at large proximal dendrites, whereas descending corticothalamic fibers form synapses on thin distal dendrites. With the use of a multicomparment computational model based on fully reconstructed TC neurons from the ventroposterola...

متن کامل

The projection of the lateral geniculate nucleus to area 17 of the rat cerebral cortex. IV. Terminations upon spiny dendrites.

The forms of the spiny dendrites in layer IV receiving degenerating thalamocortical axon terminals have been examined in serial thin sections. Reconstructions of segments of these dendrites show that the axon terminals synapse with both the dendritic spines and the dendritic shafts. No main shafts of apical dendrites of pyramidal neurons were found to synapse with the thalamic afferents, which ...

متن کامل

The projection of the lateral geniculate nucleus to area 17 of the rat cerebral cortex. II. Terminations upon neuronal perikarya and dendritic shafts.

The forms of dendrites in layer IV receiving degenerating thalamocortical axon terminals directly on their shafts were examined in serial thin sections. Reconstructions showed these dendrites varied in thickness between 2.5 and 0.5 mum. They had essentially smooth contours and rarely showed evidence of protrusions or spines. They were further characterized by the presence of many synapses along...

متن کامل

Neuronal viability is controlled by a functional relation between synaptic and extrasynaptic NMDA receptors.

N-methyl-D-aspartate receptors (NMDARs) are critical for synaptic plasticity that underlies learning and memory. But, they have also been described as a common source of neuronal damage during stroke and neurodegenerative diseases. Several studies have suggested that cellular location of NMDARs (synaptic or extrasynaptic) is a key parameter controlling their effect on neuronal viability. The ai...

متن کامل

Microtubule regulation of N-methyl-D-aspartate receptor channels in neurons.

N-Methyl-D-aspartate (NMDA) receptors (NMDARs), which play a key role in synaptic plasticity, are dynamically regulated by many signaling molecules and scaffolding proteins. Although actin cytoskeleton has been implicated in regulating NMDAR stability in synaptic membrane, the role of microtubules in regulating NMDAR trafficking and function is largely unclear. Here we show that microtubule-dep...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Neuron

دوره 82  شماره 

صفحات  -

تاریخ انتشار 2014